0=(-2)*(40x-2x^2)+(50-2x)*(40-4x)

Simple and best practice solution for 0=(-2)*(40x-2x^2)+(50-2x)*(40-4x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(-2)*(40x-2x^2)+(50-2x)*(40-4x) equation:


Simplifying
0 = (-2)(40x + -2x2) + (50 + -2x)(40 + -4x)
0 = (40x * -2 + -2x2 * -2) + (50 + -2x)(40 + -4x)
0 = (-80x + 4x2) + (50 + -2x)(40 + -4x)

Multiply (50 + -2x) * (40 + -4x)
0 = -80x + 4x2 + (50(40 + -4x) + -2x * (40 + -4x))
0 = -80x + 4x2 + ((40 * 50 + -4x * 50) + -2x * (40 + -4x))
0 = -80x + 4x2 + ((2000 + -200x) + -2x * (40 + -4x))
0 = -80x + 4x2 + (2000 + -200x + (40 * -2x + -4x * -2x))
0 = -80x + 4x2 + (2000 + -200x + (-80x + 8x2))

Combine like terms: -200x + -80x = -280x
0 = -80x + 4x2 + (2000 + -280x + 8x2)

Reorder the terms:
0 = 2000 + -80x + -280x + 4x2 + 8x2

Combine like terms: -80x + -280x = -360x
0 = 2000 + -360x + 4x2 + 8x2

Combine like terms: 4x2 + 8x2 = 12x2
0 = 2000 + -360x + 12x2

Solving
0 = 2000 + -360x + 12x2

Solving for variable 'x'.

Combine like terms: 0 + -2000 = -2000
-2000 + 360x + -12x2 = 2000 + -360x + 12x2 + -2000 + 360x + -12x2

Reorder the terms:
-2000 + 360x + -12x2 = 2000 + -2000 + -360x + 360x + 12x2 + -12x2

Combine like terms: 2000 + -2000 = 0
-2000 + 360x + -12x2 = 0 + -360x + 360x + 12x2 + -12x2
-2000 + 360x + -12x2 = -360x + 360x + 12x2 + -12x2

Combine like terms: -360x + 360x = 0
-2000 + 360x + -12x2 = 0 + 12x2 + -12x2
-2000 + 360x + -12x2 = 12x2 + -12x2

Combine like terms: 12x2 + -12x2 = 0
-2000 + 360x + -12x2 = 0

Factor out the Greatest Common Factor (GCF), '4'.
4(-500 + 90x + -3x2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor '(-500 + 90x + -3x2)' equal to zero and attempt to solve: Simplifying -500 + 90x + -3x2 = 0 Solving -500 + 90x + -3x2 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. 166.6666667 + -30x + x2 = 0 Move the constant term to the right: Add '-166.6666667' to each side of the equation. 166.6666667 + -30x + -166.6666667 + x2 = 0 + -166.6666667 Reorder the terms: 166.6666667 + -166.6666667 + -30x + x2 = 0 + -166.6666667 Combine like terms: 166.6666667 + -166.6666667 = 0.0000000 0.0000000 + -30x + x2 = 0 + -166.6666667 -30x + x2 = 0 + -166.6666667 Combine like terms: 0 + -166.6666667 = -166.6666667 -30x + x2 = -166.6666667 The x term is -30x. Take half its coefficient (-15). Square it (225) and add it to both sides. Add '225' to each side of the equation. -30x + 225 + x2 = -166.6666667 + 225 Reorder the terms: 225 + -30x + x2 = -166.6666667 + 225 Combine like terms: -166.6666667 + 225 = 58.3333333 225 + -30x + x2 = 58.3333333 Factor a perfect square on the left side: (x + -15)(x + -15) = 58.3333333 Calculate the square root of the right side: 7.637626156 Break this problem into two subproblems by setting (x + -15) equal to 7.637626156 and -7.637626156.

Subproblem 1

x + -15 = 7.637626156 Simplifying x + -15 = 7.637626156 Reorder the terms: -15 + x = 7.637626156 Solving -15 + x = 7.637626156 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '15' to each side of the equation. -15 + 15 + x = 7.637626156 + 15 Combine like terms: -15 + 15 = 0 0 + x = 7.637626156 + 15 x = 7.637626156 + 15 Combine like terms: 7.637626156 + 15 = 22.637626156 x = 22.637626156 Simplifying x = 22.637626156

Subproblem 2

x + -15 = -7.637626156 Simplifying x + -15 = -7.637626156 Reorder the terms: -15 + x = -7.637626156 Solving -15 + x = -7.637626156 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '15' to each side of the equation. -15 + 15 + x = -7.637626156 + 15 Combine like terms: -15 + 15 = 0 0 + x = -7.637626156 + 15 x = -7.637626156 + 15 Combine like terms: -7.637626156 + 15 = 7.362373844 x = 7.362373844 Simplifying x = 7.362373844

Solution

The solution to the problem is based on the solutions from the subproblems. x = {22.637626156, 7.362373844}

Solution

x = {22.637626156, 7.362373844}

See similar equations:

| n^3-9n^2+20n=0 | | -n^2-3n=0 | | 5x-2(3x-4)=25-3(5x+1) | | a^3+18=-a^2+9 | | v^2+3v-54=0 | | 3(x-2)-5(2x-1)-2(3x+4)+10=0 | | 0=(-2)*(40x-4x)+(50-2x)*(40-4x) | | 5n^4+15n^3-90n^2=0 | | 12x-5=43 | | -35=-7+7y | | 13x+9=35 | | 8k+4=-100 | | 4y+5=x+2 | | 5(2x-3)-8x=14x-3(4x+5) | | 3(2)+y=9 | | 30=85-5d | | 3(3)+y=9 | | -32=24-4f | | 3(1)+y=9 | | 3(x-1)-4x=5-(x+7) | | -3(7N-5)+4n= | | 6-2t=24 | | 11-4x=-4x+8 | | 2(-2)+2y=8 | | n^3+17n^2+72n=0 | | -2x+4=-12 | | 3-(1-6x)=2+4x | | 2(-5)+2y=8 | | 7n+14=-56 | | 2(3)+2y=8 | | 3y+5=5 | | 7x+26=136+2x |

Equations solver categories